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Abstract

Purpose – The aim of the study is to present a piecewise parabolic method (PPM) for numerical
simulation of barotropic and nonbarotropic two-fluid flows in more than one space dimension.

Design/methodology/approach – In transition layers of two components, a fluid mixture model
system is introduced. Besides, conserving the mass, momentum and energy for the mixture, the model
is supplemented with an advection equation for the volume fraction of one of the two fluid components
to recover the pressure and track interfaces. The Tait and stiffened gas equations of state are used to
describe thermodynamic properties of the barotropic and nonbarotropic components, respectively. To
close the model system, a mixture equation of state is derived. The classical third-order PPM is
extended to the two-fluid case and used to solve the model system.

Findings – The feasibility of this method has been demonstrated by good results of sample
applications. Each of the material interfaces is resolved with two grid cells and there is no any pressure
oscillation on the interfaces.

Research limitations/implications – With the mixture model system, there may be energy gain
or loss for the nonbarotropic component on the material interfaces.

Practical implications – The method can be applied to a wide range of practical problems.

Originality/value – The method is simple. It not only has the advantage of Lagrangian-type
schemes but also keeps the robustness of Eulerian schemes.

Keywords Simulation, Liquid flow, Mixtures, Compressible flow

Paper type Research paper

1. Introduction
Compressible multi-fluid flows with interfaces are involved in many applications from
gas mixing for combustion to bubbly flow and Richtmyer-Meshkov instability (RMI).
Usually, complex physics such as surface tension and heat conduction occur on the
interfaces. Therefore, establishing numerical methods to simulate such flows is of
importance.

Up to now, quite a few numerical approaches have been developed in both
Lagrangian and Eulerian frameworks to deal with compressible multi-fluid flows. These
approaches can be roughly categorized into four types: interface-tracking method,
volume of fluid method, Level-set method, and spread interface method (Allaire et al.,
2002; Perigaud and Saurel, 2005). Here, the first three methods will not be described in
detail and only the last one, i.e. the spread interface or mixture fluid method will be
discussed. In the spread interface method, the interfaces are not accurately
tracked, but are allowed to be smeared over a small number of cells, which means
that there is a transition layer between two components separated by an interface.
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Accordingly, we face two challenges. First, we have to establish a model system that is
able to correctly describe the behaviors of the mixture. Second, we need to find a way of
obtaining consistent thermodynamic law for the mixture. Usually, researchers establish
models based on the compressible Euler equations and supplement them with some
extra equations to recover the thermodynamic states. In addition, mixture equations of
state are defined to calculate the pressure for the mixtures and close the model systems.
Abgrall (1996) proposed a basic principle for construction of oscillation-free schemes, i.e.
fluids separated by an interface within a cell must have the same pressure. If this rule is
not satisfied, pressure oscillations will occur on material interfaces. He applied this
equilibrium pressure assumption to g law gas flows. Later, Shyue (1998, 1999a, 2001),
Ma et al. (2001) and Allaire et al. (2002) developed different methods based on this
assumption.

However, the above methods are specially designed for nonbarotropic flows. For
barotropic two-fluid flows, van Brummelen and Koren (2003) developed a
pressure-invariant conservative Godunov-type method. Shyue (2004) proposed a
volume-fraction based algorithm by viewing the mixture as a nonbarotropic fluid and
deriving a nonisentropic equation of state (EOS). Shyue’s scheme works well for a wide
range of problems. He also developed a volume-fraction based method for hybrid
barotropic and nonbarotropic two-fluid flow problems in which the mixture of two
components was again assumed to be nonbarotropic (Shyue, 2006). However, a big
challenge to Shyue’s model is that the energy conservation for the nonbarotropic
component cannot be maintained in the small neighborhood of the interface when a
barotropic fluid is coupled to a nonbarotropic fluid. This issue is still open. Although
theoretically there may be energy loss or gain on the interfaces, numerical tests show
that the energy balance has almost no effect on the results. Here, energy balance
implies energy conservation. Some of recent publications dealing with barotropic and
nonbarotropic two-fluid flows are those of Johnsen and Colonius (2006), Nourgaliev
et al. (2006), Liu et al. (2003, 2005) and Fedkiw et al. (1999).

This paper is concerned with the two-fluid flows where the material interface
separates a barotropic fluid with Tait EOS and a nonbarotropic fluid with stiffened gas
EOS. The two equations of state are widely used in various practical problems. For the
pure barotropic fluid, the mass and momentum conservation equations together with
Tait EOS are complete, while for the pure nonbarotropic fluid, the full set of Euler
equations is used. To deal with the mixture, we employ a simplified five-equation
model presented in Allaire et al. (2002). Besides, the basic conservation of the mass,
momentum and energy, an advection equation for the volume fraction of one fluid
component is supplemented to calculate the state variables and track material
interfaces. Drawing on the idea in Shyue (2004, 2006), we derive a mixture EOS where
the assumption of the equilibrium pressure is adopted. With this equation, the pressure
of the mixture can be calculated and the model is complete.

Note that in the present model, physical effects such as surface tension, viscosity
and heat transfer on the material interfaces are ignored. Another important
phenomenon is that cavitation usually appears in the vicinity of the interface due to
wave interaction with the interface. However, the present method does not allow for the
cavitation because of the artificial modeling and treatment of the interface.

We employ the third-order piecewise parabolic method (PPM) to solve the proposed
model system. This version of PPM is composed of the Lagrangian step and
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remapping step. In the first step, the governing equations are evolved in the
Lagrangian frame, while in the second step, the computed results in the previous step
are mapped onto the fixed Eulerian grid, which combines the advantages of
Lagrangian and Eulerian schemes into the present algorithm. At the same time, it is
very easy to extend this scheme to multi-fluid cases and multidimensional
implementations by using the dimensional-splitting technique. Numerical
simulations have been done in one and multiple dimensions to verify this method. It
is observed that our method is able to successfully deal with the barotropic and
nonbarotropic two-fluid flows where clear material interfaces are captured and
spurious oscillations in the pressure profile are eliminated.

This paper is organized as follows. In Section 2, the Tait and stiffened gas EOSs are
described and a mixture EOS is derived. In Section 3, the mixture model system is
introduced. In Section 4, PPM is discussed and then extended to the two-fluid flows and
multiple dimensions. In Section 5, the calculations for some sample applications in one
and two space dimensions are performed to validate our method. The conclusion is
given in Section 6.

2. Equation of state
In this study, the thermodynamic properties of the barotropic fluids are described by
the Tait EOS:

pðrÞ ¼ ð p0 þ bÞ
r

r0

� �g
2b ð1Þ

where p and r represent the pressure and density, respectively; p0 denotes a reference
pressure; b, a weak function of the entropy, is usually taken as a constant; g is a
dimensionless coefficient; and r0 is the liquid density extrapolated to pressure p0

(Thompson, 1972). Based on the first and second laws of thermodynamics, equation (1)
can be rewritten as:

pðrÞ ¼ ðg2 1Þre2 gb ð2Þ

where e is the internal energy per unit mass. However, the pressure in this expression
is given by Tait EOS (1). The associated sound speed for fluids with Tait EOS is:

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
›p

›r

� �
e

þ
p

r2

›p

›e

� �
r

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð pþ bÞ

r

s

But for the nonbarotropic fluids, we use the stiffened gas EOS:

p ¼ ðg2 1Þre2 gp1 ð3Þ

Here, p, r and e are the pressure, density and internal energy, respectively; g is the
adiabatic coefficient and p1 is a material-dependent constant. Obviously, the stiffened
gas EOS reduces to the perfect gas EOS as p1 is set to be zero, and thus it is suitable for
both gases and liquids. The corresponding sound speed for the stiffened fluids is:

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð pþ p1Þ

r

s
:

HFF
18,6

710



For a barotropic one-phase flow with the Tait EOS, the energy conservation equation
can be decoupled from the mass and momentum conservation equations, as the
pressure is the function of the density only. However, for a nonbarotropic one-phase
flow, the complete set of Euler equations is applied. The spread interface method
allows the material interface between two fluids to be smeared over a few grid cells. An
artificial EOS should be developed in the transition layers between the two fluids.
However, coupling a barotropic fluid to a nonbarotropic fluid is not trivial as the
energy balance issue arises.

Shyue (2006) proposed a volume-fraction based algorithm for hybrid barotropic and
nonbarotropic two-fluid flows. He viewed the mixture as a new nonbarotropic fluid and
derived a mixture EOS. To construct the model, two assumptions are made. The first is
that all the fluid components are in an adiabatic equilibrium with the same entropy. The
second is that different components in a cell have the same pressure. Shyue’s method
suffers from a drawback, namely the energy conservation of the nonbarotropic fluid
cannot be maintained in the vicinity of an interface. However, it seems that the problem
of energy balance does not influence the numerical results presented in Shyue (2006).

In the present study, we also wish to build a mixture EOS by following Shyue’s
(2004, 2006) idea. Again, the mixture of the two fluids is assumed to be nonbarotropic,
and then a generalized EOS is derived by combining equations (2) and (3):

p ¼ ðg2 1Þre2 gðbþ p1Þ ð4Þ

It becomes equations (2) or (3) when p1 or b is set to be zero, respectively. However,
in the transition layers, none of p1 and b is close to zero and thus equation (4) serves as
an appropriate EOS for the mixture. In such case, p is not a function of the density r
only, but is determined by two independent state variables, the density r and internal
energy e. In addition, it is easy to show that the energy of each fluid component can be
given by equation (4). But for the barotropic fluid, the pressure should be calculated
from the Tait EOS (1). The mixture EOS (4) gives a way of recovering the pressure in
the transition layers. The basic idea behind the equation is that the mixture is treated
as a nonbarotropic fluid. A problem arising from this EOS is how to calculate the
parameters g, b and p1, which will be discussed in the next section.

3. Governing equations
A barotropic fluid flow is governed by the isentropic version of the compressible Euler
equations:

›r
›t
þ ›ðruÞ

›x
¼ 0

›
›t
ðruÞ þ ›

›x
ðru 2 þ pÞ ¼ 0

8<
: ð5Þ

where r, p and u are the density, pressure and velocity, respectively. The energy
conservation equation is ignored as the pressure depends only on the density, p ¼ pðrÞ.

For a nonbarotropic fluid flow, the energy conservation equation should be
supplemented:

›

›t
ðrEÞ þ

›

›x
½ðrE þ pÞu� ¼ 0

Here, E ¼ ð1=2Þu 2 þ e and e are the total and internal energy, respectively.
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In the transition layers of the two fluids, a mixture model system is employed:

›r
›t
þ ›ðruÞ

›x
¼ 0

›
›t
ðruÞ þ ›

›x
ðru 2 þ pÞ ¼ 0

›
›t ðrEÞ þ

›
›x ½ðrE þ pÞu� ¼ 0

›Y ð1Þ

›t
þ u ›Y ð1Þ

›x
¼ 0

8>>>>>><
>>>>>>:

ð6Þ

where Y (1) is the volume fraction of fluid 1 with the constraints Y ð1Þ [ ½0; 1� and
Y ð1Þ þ Y ð2Þ ¼ 1; r, u and E ¼ ð1=2Þu 2 þ e are the density, velocity and total energy,
defined as:

r ¼
X2

i¼1

Y ði Þr ði Þ; ru ¼
X2

i¼1

Y ði Þr ði Þu ði Þ ð7aÞ

rE ¼
X2

i¼1

Y ði Þr ði Þe ði Þ þ
1

2
Y ði Þr ði Þðu ði ÞÞ2

� �
ð7bÞ

Here, the quantities with the superscript (i ) correspond to the relative states of fluid i.
In the barotropic regions, Y ð1Þ ¼ 1, while in the nonbarotropic regions Y (1) is set to
be 0. In the transition layers, Y (1) takes the intermediate value between 0 and 1.
Note that this model is also valid in the nonbarotropic fluid only regions, but the
variables should be defined for the single fluid.

The model system (6) can be regarded as the 1D compressible Euler equations,
except that it is supplemented with an advection equation for the volume fraction. In
fact, it is the simplified five-equation model in Allaire et al. (2002), where the mass of
each component is conserved. But in the current case, individual densities are not used
in recovering the pressure; hence only the mass conservation equation for the mixture
is included.

With EOS (4), model (6) is closed. Before calculating the parameters in equation (4),
we introduce the assumption of equilibrium pressure, i.e. p ¼ p ð1Þ ¼ p ð2Þ. Here, it is
assumed that the two fluid components within a cell have the same pressure.
This assumption is critical as it can guarantee that our model is free of oscillations.
In addition, there is no jump in velocity across a material interface, i.e. u ¼ u ð1Þ ¼ u ð2Þ.
According to the EOS (4) and relation (7), the energy density for the mixture can be
expressed as:

pþ gbþ gp1

g2 1
¼ re ¼

X2

i¼1

Y ði Þr ði Þe ði Þ ¼
X2

i¼1

Y ði Þ p ði Þ þ g ði Þb ði Þ þ g ði Þpði Þ1

g ði Þ 2 1

� �
ð8Þ

Here, the energy density of the mixture is the sum of those of individual fluids because
each cell contains two components with different volume fractions. However, the
introduction of the “fictitious energy” of the barotropic fluid will interfere with the
energy balance of the nonbarotropic fluid. Therefore, as in Shyue (2006), the energy
conservation of the nonbarotropic fluid is omitted in the small region near the material
interface.
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To solve for g, b and p1, we split the above equality into the following three
algebraic relations:

1

g2 1
¼

X2

i¼1

Y ði Þ

g ði Þ 2 1
;

gb

g2 1
¼

X2

i¼1

Y ði Þ g
ði Þb ði Þ

g ði Þ 2 1
;

gp1

g2 1
¼

X2

i¼1

Y ði Þ g
ði Þpði Þ1

g ði Þ 2 1
ð9Þ

where the assumption of the equilibrium pressure p ¼ p ð1Þ ¼ p ð2Þ has been used.
Solving equation (9), we can obtain the values of g, b and p1. So far, the model for the
mixture is completely constructed and the next is to solve it efficiently. It should be
remarked that though we adopt model (5) or (6) in different regions, the advection
equation for the volume fraction is evolved in the whole domain. Its value can help us
identify the component in each cell and further help us select the appropriate equations
of motion as well as EOS in each portion of the computational domain.

The well-posedness of the model system (6) has not been carefully investigated in
the literature. The problem is still open. Allaire et al. (2002) and Shyue (2006) only
discussed some of elementary properties of the system.

4. Numerical method
PPM (Colella and Woodward, 1984a) is a third-order Godunov-type method. This
method has several remarkable features that distinguish it from other Godunov-type
schemes. First, the constant and linear interpolation functions used in Godunov’s
scheme and van Leer’s MUSCL scheme, respectively, are replaced by a parabola, which
allows for a more accurate representation of smooth spatial gradients, as well as a
sharper profile of discontinuities, particularly contact discontinuities. Second, the
representation of the nonlinear wave interactions used to calculate fluxes is greatly
simplified, making the algorithm simpler and more robust. Third, additional
dissipation is introduced to eliminate oscillations near shock waves and preserve
stabilities. Finally, the Lagrangian-remapping version of PPM can be easily extended
to multi-fluid flows and multidimensional implementation. These features make PPM
highly suitable for multi-fluid problems with complex structures such as shock waves
and contact discontinuities. Numerical tests prove that it outperforms other schemes
(Colella and Woodward, 1984b). In this section, we first describe PPM by applying it to
a linear advection equation, and then extend it to multi-fluid flows in multiple
dimensions.

4.1 The PPM advection scheme
The construction of the parabolic interpolation function is very critical to PPM scheme.
To describe this procedure clearly, we apply PPM to a linear advection equation:

›u

›t
þ a

›u

›x
¼ 0; uðx; 0Þ ¼ u0ðxÞ; a ¼ const ð10Þ

Let xjþ1=2 be the boundary between the jth and ( j þ 1)th cells, and assume that unj is
known. Here, unj is the cell average of the accurate solution uðx; tÞ in the jth cell
ðxj21=2; xjþ1=2Þ at time t ¼ tn and given by:

unj ¼
1

Dxj

Z xjþ1=2

xj21=2

uðx; t nÞdx; Dx ¼ xjþ1=2 2 xj21=2 ð11Þ
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where Dxj is the size of the jth cell, satisfying the stability condition aDt=minjDxj # 1
with Dt representing the time step.

We construct the interpolation function u(x), a piecewise continuous polynomial, in
such a way that it satisfies the integration relation:

unj ¼
1

Dxj

Z xjþ1=2

xj21=2

uðxÞdx ð12Þ

Apparently, the solution of the advection equation (10) is uðx; t nþ1Þ ¼ uðx2 aDt; t nÞ,
so we can explicitly calculate unþ1

j , the cell average at a new time level t nþ1 ¼ t n þ Dt:

unþ1
j ¼

1

Dxj

Z xjþ1=2

xj21=2

uðx2 aDtÞdx ð13Þ

Therefore, what we need to do is to construct the interpolation function u(x). PPM uses
a parabolic function as the interpolation polynomial which takes the form:

uðxÞ ¼ uL;j þ jðDuj þ u6;jð1 2 jÞÞ

j ¼
ðx2xj21=2Þ

Dxj
; xj21=2 # x # xjþ1=2

ð14Þ

where the coefficients are written as:

x!xþ
j21=2

lim uðxÞ ¼ uL;j;
x!x2

jþ1=2

lim uðxÞ ¼ uR;j

Duj ¼ uR;j 2 uL;j; u6;j ¼ 6 unj 2
1
2 ðuL;j þ uR;jÞ

� � ð15Þ

In smooth regions where the solution has no extrema, we have uL;jþ1 ¼ uR;j ¼ unjþ1=2.

Here, unjþ1=2 is the approximation to u(x) at the boundary xjþ1=2 and is interpolated by
using a fourth degree polynomial:

unjþ1=2 ¼ unj þ
Dxj

Dxj þ Dxjþ1
unjþ1 2 unj

� � 1P2
k¼21Dxjþk

£
2DxjDxjþ1

Dxj þ Dxjþ1

Dxj21 þ Dxj
2Dxj þ Dxjþ1

2
Dxjþ2 þ Dxjþ1

2Dxjþ1 þ Dxj

� �
unjþ1 2 unj

� ��

2Dxj
Dxj21 þ Dxj
2Dxj þ Dxjþ1

dujþ1 þ Dxjþ1
Dxjþ1 þ Dxjþ2

2Dxjþ1 þ Dxj
duj

	 ð16Þ

where duj is the average slope in the jth cell of the parabola:

duj ¼
Dxj

Dxj21 þ Dxj þ Dxjþ1

2Dxj21 þ Dxj
Dxj þ Dxjþ1

unjþ1 2 unj

� �
þ

2Dxjþ1 þDxj
Dxj21 þ Dxj

unj 2 unj21

� �� �

Colella and Woodward (1984a) modified duj, replacing it by dmuj:
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dmuj ¼

min duj


 

; 2 unj 2 unj21




 


; 2 unjþ1 2 unj




 


� �
sgnðdujÞ;

ifðunjþ1 2 unj Þðu
n
j 2 unj21Þ . 0

0; otherwise

8>>>><
>>>>:

This modification leads to a sharper profile of discontinuities in the solution, and also
guarantees that unjþ1=2 lies in the range of values defined by unj and unjþ1.

The value of unjþ1=2 calculated by the above procedure is third-order accurate for
both uniform and nonuniform grids. unjþ1=2 will be assigned to uL;jþ1 and uR;j for most
values of j. However, there are some cases where the interpolation function should be
modified to improve the performance of this scheme. First, if values of the interpolation
function fall out the range of values defined by uL;j and uR;j, we should reset uL;j and
uR;j to ensure the function is monotonic in each cell. Second, we modify the
interpolation procedure slightly so that, in the neighborhood of a discontinuity, it
produces a sharper profile than the scheme described above, i.e. if the jth cell is in a
discontinuity, uL;j and uR;j should be reset. This is referred to as discontinuity detection
and should be performed before applying the monotonicity algorithm. These
modifications are complicated, so for simplicity we do not describe them here. For
details, see the paper of Colella and Woodward (1984a).

Once the values of uL;j and uR;j are known, it is easy to evaluate unþ1
j by integrating

equation (14). We define averages of the interpolation function:

f ujþ1=2;Lð yÞ ¼
1

y

Z xjþ1=2

xjþ1=22y

uðxÞdx; f ujþ1=2;Rð yÞ ¼
1

y

Z xjþ1=2þy

xjþ1=2

uðxÞdx ð17Þ

where y is assumed to be positive.
Substituting u(x) given in equation (14) into the above formula yields:

f ujþ1=2;Lð yÞ ¼ uR;j 2
h
2 Duj 2 1 2 2

3 h
� �

u6;j

� �
; h ¼ y

Dxj

f ujþ1=2;Rð yÞ ¼ uL;jþ1 þ
h
2 Dujþ1 þ 1 2 2

3 h
� �

u6;jþ1

� �
; h ¼ y

Dxjþ1

ð18Þ

Then, unþ1
j can be expressed in explicit conservation form as:

unþ1
j ¼ unj 2

Dt

Dxj
ðf̂jþ1=2 2 f̂j21=2Þ ð19Þ

where the fluxes f̂j21=2 and f̂jþ1=2 are given by:

f̂jþ1=2 ¼

af ujþ1=2;LðaDtÞ; if a $ 0

af ujþ1=2;Rð2aDtÞ; if a # 0

8<
: ð20Þ

From the above procedure for the linear advection equation, we can understand that
one key element of PPM is to construct a parabolic interpolation function and adjust
relative parameters to maintain monotonicity and treat discontinuities.
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4.2 The PPM for compressible barotropic and nonbarotropic two-fluid flows
PPM is originally designed for the single fluid flows. In Colella and Woodward (1984a),
two versions of this scheme are provided, i.e. Eulerian and Lagrangian-remapping
formulations. In our paper, the latter is employed as it is third-order accurate and can
be quite easily extended to the multi-fluid flows. Thus, calculations are first performed
in the Lagrangian coordinate system and then the obtained results are mapped onto the
fixed Eulerian grid. This version of PPM is highly suitable for problems where we are
concerned with the material interfaces capturing. Though systems of equations (5)
and (6) are solved in different regions, we only discuss equation (6) in this subsection
because solving equation (5) is easier by following the same procedure.

In the Lagrangian coordinate system, the governing equations (6) are rewritten as:

›t
›t
2 ›ðr auÞ

›m
¼ 0

›u
›t
þ r a ›p

›m
¼ 0

›E
›t
þ ›ðr aupÞ

›m
¼ 0

›Y ði Þ

›t
¼ 0

8>>>>>><
>>>>>>:

ð21Þ

Here, u, p and E are the velocity, pressure, and total energy per unit mass, respectively;
Y (1) is the volume fraction of fluid 1 and t ¼ 1=r is the specific volume; m is the mass
coordinate satisfying the relation:

mðrÞ ¼

Z r

r0

rðrÞr adr

where r is the spatial coordinate; a ¼ 0; 1; 2 correspond to the planar, cylindrical and
spherical symmetry, respectively. At time t n, we define the mass-weighted average of
the quantity U as:

Un
j ¼

1

Dmj

Z mjþ1=2

mj21=2

U ðm; t nÞdm

with U ¼ ðr; u;E;Y ð1ÞÞ.
The procedure of solving the model (21) consists of the following six steps:

(1) From the known cell averages rnj , unj , En
j and ðY ð1ÞÞ

n

j , we can calculate
the pressure pnj using the EOS (4), i.e. pnj ¼ pðrnj ; e

n
j ; ðY

ð1ÞÞ
n

j Þ with
enj ¼ En

j 2 ð1=2Þðunj Þ
2.

(2) Apply the interpolation procedure described in the previous subsection to the

cell averages rnj , unj , pnj and ðY ð1ÞÞ
n

j to construct the corresponding interpolation

functions r(x), u(x), p(x) and Y (1)(x).

(3) With formula (18), we can construct the left and right states for a Riemann
problem at the boundary m ¼ mjþ1=2, i.e. ðr̂jþ1=2; ûjþ1=2; p̂jþ1=2; ðŶ

ð1ÞÞjþ1=2Þ with
l ¼ L;R. Here, the left state is the average values of the dependent variables
over the domain between mjþ1=2 and the point where the C þ characteristic line
dm=dt ¼ rarc through ðmjþ1=2; t

nþ1Þ intersects the line t ¼ t n. The
characteristic velocity is:
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aj ¼ ðrarcÞj ¼
rnjþ1=2

� �aþ1

2 rnj21=2

� �aþ1

ðaþ 1Þðrn
jþ1=2 2 rn

j21=2Þ
rnj c

n
j

Thus, for the velocity we have:

ûjþ1=2;L ¼ uR;j2
h

2
Duj2 12

2

3
h

� �
u6;j

� �
h¼

ajDt

Dmj

; Duj ¼ uR;j2 uL;j ð22Þ

and other variables can be obtained in a similar manner. Similarly, the right
state is the average values over the region between mjþ1=2 and the point where
the C 2 characteristic line dm=dt ¼ 2r arc through ðmjþ1=2; t

nþ1Þ intersects the
line t ¼ t n. The characteristic velocity is taken as 2ajþ1, so for the velocity we
have:

ûjþ1=2;R ¼ uL;jþ1 þ
h

2
Dujþ1 þ 1 2

2

3
h

� �
u6;jþ1

� �
h ¼

ajþ1Dt

Dmjþ1
;

Dujþ1 ¼ uR;jþ1 2 uL;jþ1

ð23Þ

The remaining variables can be calculated by taking the same procedure. In
these expressions:

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð pþ bþ p1Þ

r

s

is the sound speed of the mixture.

(4) Solving a Riemann problem with the initial states calculated in the previous
step, we can obtain the time-averaged values for u*

jþ1=2 and p*
jþ1=2 at the

boundary m ¼ mjþ1=2. The approximate Riemann solver will be discussed in
detail in the next subsection.

(5) Evolve the governing equations (21) in the Lagrangian frame:

xnþ1
jþ1=2 ¼ xnjþ1=2 þ Dtu*

jþ1=2

tnþ1
j ¼

xnþ1
jþ1=2

� �aþ1

2 xnþ1
j21=2

� �aþ1

ðaþ1ÞDmj

unþ1
j ¼ unj þ

1
2 ð

�Ajþ1=2 þ
�Aj21=2Þ

Dt
Dmj

p*j21=2 2 p*jþ1=2

� �
Enþ1
j ¼ En

j þ
Dt
Dmj

�Aj21=2u
*
j21=2p

*
j21=2 2

�Ajþ1=2u
*
jþ1=2p

*
jþ1=2

� �
ðY ð1ÞÞ

nþ1
j ¼ ðY ð1ÞÞ

n

j

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð24Þ

where:
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�Ajþ1=2 ¼

xnþ1
jþ1=2

� �aþ1

2 xnjþ1=2

� �aþ1
� �

ðaþ 1Þ xnþ1
jþ1=2 2 xn

jþ1=2

� �h i

(6) Finally, map the results obtained in the Lagrangian step onto the fixed Eulerian
grid. Let x0

jþ1=2 be the Eulerian coordinate of the boundary xjþ1=2 at time t n and
xnþ1
jþ1=2 be its Lagrangian coordinate at time t nþ1. The displacement of the

boundary is x*
jþ1=2 ¼ xnþ1

jþ1=2 2 x0
jþ1=2. Besides, V 0

j is the volume of the fixed jth

cell in the Eulerian frame at t n, while Vj is the volume of the jth cell in the

Lagrangian reference frame at t nþ1. DV*
jþ1=2 denotes the volume of the mixture

that passes through the boundary x0
jþ1=2. We apply the PPM interpolation and

integration procedures to calculate:

U*
jþ1=2 ¼ r*

jþ1=2; u
*
jþ1=2; p

*
jþ1=2; ðY

ð1ÞÞ
*
jþ1=2

� �

U*
jþ1=2 ¼

f Ujþ1=2;L

Dx*
jþ1=2

Dxj

� �
if Dx*

jþ1=2 $ 0

f Ujþ1=2;R

2Dx*
jþ1=2

Dxjþ1

� �
if Dx*jþ1=2 # 0

8>>>><
>>>>:

ð25Þ

Then the values of g*, b* and p*1 can also be calculated. Define some quantities:

Dmj ¼ rjV j; Dm0
j ¼ ðrEulerÞjV

0
j ; Dm*

jþ1=2 ¼ r*
jþ1=2DV

*
jþ1=2

DE*jþ1=2 ¼
1
2 u*jþ1=2

� �2

Dm*
jþ1=2 þ

p*þg*b*þg*p*1
g*21

� �
DV*

jþ1=2

Here, rj and ðreulerÞj represent the densities in the Eulerian frame at times t n

and t nþ1, respectively. With those above, the remapping formulae are written as:

ðreulerÞj ¼
Dmjþr*

j21=2
DV*

j21=2
2r*

jþ1=2
DV*

jþ1=2

h i
V 0

j

ðueulerÞj ¼
ujDmjþu*

j21=2
Dm*

j21=2
2u*

jþ1=2
Dm*

jþ1=2

h i
Dm0

j

ðEeulerÞj ¼
EjDmjþDE*

j21=2
2DE*

jþ1=2

h i
Dm0

j

½ðY ð1ÞÞeuler�j ¼
ðY ð1ÞÞjV jþðY ð1ÞÞ*j21=2DV

*
j21=2

2ðY ð1ÞÞ*jþ1=2DV
*
jþ1=2

h i
V 0

j

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð26Þ

where the variables on the left hand side denote the required solutions in the
Eulerian coordinate system at the new time level t nþ1.
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4.3 Riemann solver
In the PPM scheme, a key element is to efficiently solve Riemann problems because we
must use their solutions to evolve the governing equations. To save computational
efforts and improve efficiency, quite a few approximate Riemann solvers have been
developed (Colella and Glaz, 1985; Toro, 1999). Here, we employ a two-shock
approximation of the Riemann solver where rarefaction waves are neglected and
replaced by shocks (Toro, 1999; Shyue, 1999a). In one space dimension, the constructed
solution is composed of a rightward-going shock wave, a leftward-going shock wave
and a contact discontinuity between them. Our aim is to find the midstate ðu*; p*Þ, the
velocity and pressure in the region bounded by the left and right shock waves.

It is well known that solving the following nonlinear equations yields ðu*; p*Þ:

u*Lð p
*Þ2 u*Rð p

*Þ ¼ 0 ð27aÞ

u*Lð p
*Þ ¼ uL 2

p* 2 pL

MLð p*Þ
; u*Rð p

*Þ ¼ uR þ
p* 2 pR

MRð p*Þ
ð27bÞ

where u*Lð p
*Þ and u*Rð p

*Þ satisfy the shock jump relations. On the other hand, based
on the Rankine-Hugoniot jump condition:

M 2
l ðe

*
l 2 elÞ ¼

ð p*Þ2 2 p2
l

2
; l ¼ L or R ð28Þ

the density jump relation across the shock waves:

r*l ð p
*Þ ¼

r21
l 2 p*2pl

M 2
l ð p*Þ

h i21

; Y ð1Þ [ ½0; 1Þ

r0l
p*þbl

p0lþbl

� �1=gl
; Y ð1Þ ¼ 1

8>>><
>>>:

ð29Þ

as well as the EOS, an explicit expression for Ml can be derived:

M 2
l ð p

*Þ ¼

C2
l 1 þ glþ1

2gl

p*þblþð p1Þl
plþblþð p1Þl

2 1
� �h i

; Y ð1Þ [ ½0; 1Þ

2 p*2pl
ðr*

l
Þ212r21

l

; Y ð1Þ ¼ 1

8>><
>>: ð30Þ

where Cl ¼ rl cl is the Lagrangian sound speed and cl is the real sound speed.
Applying the secant method to equation (27a), we have the following iteration

scheme:

ð p*Þnþ1 ¼ ð p*Þn 2
ð p*Þn 2 ð p*Þn21


 



ðu*LÞ
n 2 ðu*LÞ

n21



 


þ ðu*RÞ

n 2 ðu*RÞ
n21




 


 ðu*RÞ
n 2 ðu*LÞ

n
h i

ð31Þ

where n denotes iteration times. With the appropriate initial values of ð p*Þ0; ð p*Þ1,
equations (27b) and (31) fast converge to the desired solution.
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4.4 Multidimensional implementations
It is very easy to extent the one-dimensional PPM to multidimensional
implementations by applying the operator splitting technique of Strang (1968). For
example, in three space dimensions, calculations are performed as follows:

U nþ1 ¼ LxðDtÞLyðDtÞLzðDtÞU
n

U nþ2 ¼ LzðDtÞLyðDtÞLxðDtÞU
nþ1 ð32Þ

Here, Lx;Ly;Lz denote the PPM operators in the x, y and z directions, respectively. U is
a vector with six unknowns as its elements. In fact, a 3D problem is decomposed into
three 1D ones.

5. Numerical results
In order to validate the PPM scheme, we apply it to several problems in one and two
dimensions, comparing numerical results with those in some references and examining
its performance. Throughout calculations below, the courant number is set to be 0.6, i.e.
Court ¼ 0.6.

5.1 One-dimensional problems
Example 1. In this example, we present the simulation of a two-fluid Riemann
problem. In the region x [ ½22; 0Þ, we have the nonbarotropic air characterized by the
stiffened gas EOS with the initial state ð p; r; u; g; p1Þ ¼ ð1; 000; 0:13895; 0; 1:4; 0Þ, while
in the region x [ ½0; 2�, we have the barotropic water characterized by the Tait EOS with
the initial state ð p; r; u;g; r0; p0;bÞ ¼ ð1; 1; 0; 7; 1; 1; 3; 000Þ. In this calculation,
a 200-cell grid is used and the results at time t ¼ 0:01 are shown in Figure 1.

This example was first studied in Shyue (2004) where both water and air were
assumed to be barotropic. Obviously, the self-similar solution consists of a
rightward-going shock wave, a leftward-going rarefaction wave and a contact
discontinuity between them. We can clearly see such structures in Figure 1 where both
the computational and exact solutions are shown. On the material interface, the
numerical diffusion is very small and no pressure oscillations occur. The numerical
results compare quite well to the exact solution, which proves the validity of our
method for the Riemann problem with a strong shock.

It should be noted that, in this paper, the exact solution of the 1D problem is not that
to the model system (6). In the barotropic region, it is the exact solution to the isentropic
version of the Euler equations, while in the nonbarotropic region, it corresponds to the
solution to the full set of Euler equations.

To verify the convergence, we present the numerical results with four sets of grids:
200, 1,000, 5,000 and 10,000. As show in Figure 2, the results converge as the grids are
refined.

Example 2. Now, we consider a more complicated case where a material interface
will be accelerated by a shock. The computational domain is still x [ ½22; 2�, but
unlike the above problem, the initial condition of this case is composed of three states.
A material interface is located at the center of the domain. Water is on the left of the
interface, while the right portion is occupied by air. In addition, in water, a traveling
shock is located at x ¼ 0 and moving from left to right, which means that the shock
would collide with the material interface at time t ¼ 0. We still use the Tait EOS for
water and the stiffened gas EOS for air. The initial condition reads:
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ð p; r;u;g; r0; p0;bÞL ¼ ð10; 1:00043; 0:062; 7; 1; 1; 3; 000Þ

ð p; r;u;g; r0; p0;bÞM ¼ ð1; 1; 0; 7; 1; 1; 3; 000Þ; ð p; r;u;g; p1ÞR ¼ ð1; 0:001; 0; 1:4; 0Þ

where quantities with subscripts L and R represent states of the fluids in the left and
right sides of the domain, respectively; variables with subscript M give condition of the
undisturbed water and are related to the left state by the shock and the right state by
the contact discontinuity.

The results of this simulation at time t ¼ 0:01 are shown in Figure 3. To show them
more clearly, the logarithm scale is used in the density and pressure profiles. The PPM
gives sharper representations of the shock wave and contact discontinuity, and the
reflected rarefaction wave is also well calculated. As compared with other methods, our
approach has the higher-order accuracy in smooth regions of the solution, and less
diffusion near discontinuities. The material interface is captured accurately and there

Figure 1.
Results of a two-fluid

Riemann problem at time
t ¼ 0:01
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Notes: The four subfigures are (a) density; (b) pressure; (c) momentum and (d) volume fraction of water.
The solid lines represent the exact solution, while the circles give the results by PPM with a uniform
200-cell grid
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is no any pressure oscillation in vicinity of the interface. Again, the computational
results agree quite well with the exact solution.

5.2 Two-dimensional problems
Example 3. This example is about the advection of a material interface separating
two fluids. Initially, the center of a bubble of radius r0 ¼ 0:16 is located at ðx; yÞ ¼
ð0:25; 0:25Þ in the physical domain ½0; 1� £ ½0; 1�. Inside the bubble, we have the water
with the state ð p; r; g; r0; p0;bÞ ¼ ð1; 1; 7; 1; 1; 3; 000Þ, while in the region outside the
bubble, we have a gas with the state ð p; r; g; p1Þ ¼ ð1; 0:001; 1:4; 0Þ. Unlike the
problem in Shyue (2004) where both the two fluids are characterized by the Tait EOS,
we use the Tait EOS for the water and the stiffened gas EOS for the gas in the current
case. Since the two fluids are traveling with an equilibrium pressure p ¼ 1 and a
constant velocity ðu; vÞ ¼ ð100; 100Þ, only a material interface exists. In this
calculation, a 100 £ 100 grid is used.
This example is taken from Shyue’s (2004) paper and used here to confirm that our
scheme can preserve the pressure invariance. Theoretically, this problem is very

Figure 2.
Results of the Riemann
problem shown in Figure, 1
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Notes: The four subfigures are (a) density; (b) pressure; (c) momentum and (d) volume fraction of water.
To study the convergence, we use four sets of grid: 200, 1000, 5000 and 10000
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simple and the interface should translate with the constant pressure and velocity.
We run the code to the time of t ¼ 0:005, and the corresponding results are shown in
Figures 4 and 5. As shown in Figure 4, the air bubble remains circular and clear at the
late time. Figure 5 shows the profiles of the density, pressure, velocity and volume
fraction of water along the diagonal y ¼ x. From this figure we can see that the
computational results agree well with the exact solution, and the interface is well
located. In addition, there is no any oscillation in pressure near the interface.
As compared with that in Shyue (2004) where the transition layer is in over eight cells,
the numerical diffusion is greatly reduced and the interface is captured within two
cells. Although the comparison between the two different systems may be not
appropriate, it serves as an example showing that our method can capture the material
interface with small diffusion. This sample application demonstrates that our scheme
works well for a pure interface problem with two different barotropic and
nonbarotropic fluids.

Figure 3.
Results of a shock

interaction with a material
interface
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Notes: The four subfigures are (a) density (logarithm scale); (b) pressure (logarithm scale);
(c) momentum and (d) volume fraction of water. The solid and circular lines denote the exact and
computational solutions at time t = 0.01 respectively
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Figure 4.
Density contours of 2D
material interface
advection problem at time
t ¼ 0; 0:005

water

waterair

t=0

t=0.005

Note: In this calculation, a 100 × 100
grid is used

Figure 5.
Results of the relevant
variables along the
diagonal y ¼ x at time
t ¼ 0:005 for the problem
shown in Figure 4

x

p

0 0.5 1

0.8

1

1.2

(b)

x

r

0 0.5 1

0

0.5

1

(a)

x
0 0.5 1

(d)

Y
(1

)

0

0.5

1

x
0 0.5 1

(c)

v

120

140

160

Notes: (a) Density; (b) pressure; (c) velocity; (d) volume fraction of water. Here the velocity v is
defined as v=   u2 + v2. The solid lines denote the exact solution, while circles give the numerical
results obtained by the PPM with a uniform 100 × 100 grid
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Example 4. Now, we present a numerical simulation of RMI in two space dimensions. It
is well known that in such problems, a material interface with small perturbation will
become unstable when an incident shock in one fluid drives it, i.e. the amplitude of the
perturbation varies with time. The two fluids separated by the interface have different
densities and may be characterized by two distinct equations of state. In this example,
the computational domain is selected as a rectangle with the size ½0; 4� £ ½0; 1�. The
stationary interface is written as x ¼ x0 þ 1cosð2pyÞ, y [ ½0; 1�. Here, x0 ¼ 1:2 is the
position of the unperturbed interface and 1 ¼ 0:1 is the amplitude of the perturbation.
On the left of the interface, the fluid is a liquid with the state ð p; r; u; g; p1Þ ¼ ð1; 5; 0; 4; 0Þ,
while on the right of the interface, the fluid is a gas with the state
ð p; r; u; g; r0; p0;bÞ ¼ ð1; 1; 0; 1:4; 1; 1; 0Þ. In the liquid, a rightward-going Mach 1.95
shock is located at x ¼ 21:5. Besides, we suppose that the liquid is nonbarotropic and use
the stiffened gas EOS for it, while for the gas, we use the Tait EOS.

After the interaction between the shock and interface, there will be a transmitted
shock and a reflected rarefaction wave since the shock is originally located in the heavy
fluid. We can observe the process of the interface evolution in Figure 6: at time t ¼ 0, it
is stationary with a specified perturbation, at time t ¼ 0:2 the shock just penetrates the
interface, at time t ¼ 1:2 the phase inverse of the perturbation has completed and
amplitude continues increasing, and at time t ¼ 2:0, typical spike and bubble
structures characteristic of RMI completely forms. Variations of amplitude and growth
rate of the perturbation with time are shown in Figure 7. Here, the perturbation
amplitude and growth rate are defined as a ¼ xmax 2 xmin and v ¼ _xmax 2 _xmin,
respectively, where x denotes the x coordinate of any point on the interface. We can
observe the amplitude first decreases and then increases due to the effect of the phase
inverse. Accordingly, the growth rate is negative, then becomes positive, and finally
tends to a constant. Figure 8 shows the cross-sectional results of the density and
pressure along the horizontal center line y ¼ 0:5. To examine the convergence of
numerical solutions, we do the simulation using three different sets of mesh grids,
i.e. 100 £ 25, 200 £ 50 and 400 £ 100. It is obvious that the solutions converge as the
grids are refined. This calculation proves that our scheme can successfully capture the

Figure 6.
Density and pressure

contours of
Richtmyer-Meshkov

instability where a
liquid-gas interface is

driven by a Mach 1.95
shock in the liquid
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t=2.0

t=0

Pressure

t=0.2

t=1.2

t=2.0

Note: The numerical results are obtained by PPM scheme with a 400 × 100 mesh grid
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2D interface between two thermodynamically different fluids in presence of shocks.
In addition, to learn more about the RMI, see the review of Brouillette (2002).

Example 5. The final example concerns a shock wave in water interaction with an
air bubble. In a rectangular domain ½0; 1� £ ½20:2; 1�, a stationary air bubble of radius
r ¼ 0:2 is located at ðx0; y0Þ ¼ ð0:5; 0:5Þ. The initial condition for air with stiffened gas
EOS is ð p; r; g; p1Þ ¼ ð1; 0:0012; 1:4; 0Þ. The bubble is surrounded by stationary water
with the state ð p; r; g; r0; p0;bÞ ¼ ð1; 1; 7; 1; 1; 3; 000Þ. Here, water is taken to fulfill
Tait EOS. We assume that there is a downward-going Ma 1.587 shock in water on
plane y ¼ 0:8 located just over the bubble, and the corresponding post-shock state
reads ð p; r; u; v; g; r0; p0;bÞ ¼ ð10; 000; 1:233; 0;243:467; 7; 1; 1; 3; 000Þ. In this case,
ratio of Lagrangian sound speed ðrcÞwater=ðrcÞair < 3; 535 is so large that simulation is
more difficult.

This calculation is performed with a 200 £ 240 mesh grid. Figure 9 shows contours
of the density, pressure and volume fraction at three times t ¼ 0:001; 0:003 and 0:005,
demonstrating evolution of the bubble. At time t ¼ 0:001, the shock wave is

Figure 8.
Cross-sectional plots of the
density and pressure
along the horizontal center
line y ¼ 0:5 at time t ¼ 2:0
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penetrating the bubble and complex systems of waves such as transmitted shock wave
and reflected rarefaction wave are generated. At time t ¼ 0:003, the shock continues
moving downward, and the bubble has deformed greatly due to instability. At time
t ¼ 0:005, the bubble is divided into two vertexes. Our method gives good results,
which compare well to those in Shyue (1999b).

6. Conclusion
In this paper, we present a third-order PPM scheme for the compressible two-fluid
flows where the barotropic and nonbarotropic fluid components are separated by the
material interfaces. We use the Tait and stiffened gas EOSs to characterize the

Figure 9.
Contours of the density,

pressure and volume
fraction for the problem of

shock wave interactions
with an air bubble
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thermodynamic properties of the barotropic and nonbarotropic components,
respectively. A mixture model system based on the volume fraction is introduced to
model motions of the mixture. Based on the assumption of the equilibrium pressure
and Shyue’s idea, a mixture EOS is derived. We efficiently solve the model system by
using the third-order Lagrangian-remapping version of PPM. As compared with other
methods, the present scheme has two remarkable features. First, it can capture the
material interfaces with less diffusions and without introducing spurious oscillations.

Second, this scheme can be easily extended to the multi-fluid flows and
multidimensional implementations. Therefore, our method can be applied to a range of
practical problems.
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Mie-Grüneisen equation of state”, J. Comput. Phys., Vol. 171, pp. 678-707.

Shyue, K.M. (2004), “A fluid-mixture type algorithm for barotropic two-fluid flow problems”,
J. Comput. Phys., Vol. 200, pp. 718-48.

Shyue, K.M. (2006), “A volume-fraction based algorithm for hybrid barotropic and
non-barotropic two-fluid flow problems”, Shock Waves, Vol. 15, pp. 407-23.

Strang, G. (1968), “On the construction and comparison of difference schemes”, SIAM J. Numer.
Anal., Vol. 5 No. 3, pp. 506-17.

Thompson, P.A. (1972), Compressible-fluid Dynamics, McGraw-Hill, New York, NY.

Toro, E.F. (1999), Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction, Springer, Berlin Heidelberg.

van Brummelen, E.H. and Koren, B. (2003), “A pressure-invariant conservative Godunov-type
method for barotropic two-fluid flows”, J. Comput. Phys., Vol. 185, pp. 289-308.

Corresponding author
J.G. Zheng can be contacted at: zhengjg9705@yahoo.com

Piecewise
parabolic method

729

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


